If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-201=0
a = 2; b = 2; c = -201;
Δ = b2-4ac
Δ = 22-4·2·(-201)
Δ = 1612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1612}=\sqrt{4*403}=\sqrt{4}*\sqrt{403}=2\sqrt{403}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{403}}{2*2}=\frac{-2-2\sqrt{403}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{403}}{2*2}=\frac{-2+2\sqrt{403}}{4} $
| 2x+16=116-8x | | Z^4+5z^2=0 | | 3(3x+3)=42 | | 7x+6=36-3x | | 6x-9-3x-3=0 | | 9-5x=2x-15+x | | (a-9)(a+6)=0 | | 6x-9-3x-36=2x | | 36x2+154x-36=0 | | 7x+2=-5x+12 | | 1/6=4x-2 | | (x+6)=x/2+x/3 | | (6x-15)(3x+21)=0 | | -16x-20=-8-7x-6 | | 15x^2-6x-221=0 | | 8x-26=2x+16 | | (6x^2)+12x+6=0 | | x³+8=0 | | 5x+8x*x*x*x=25 | | t+1/11=1 | | x*x*x=0.0576 | | -8n-4=-n-6-8n | | 2(5m+1)=10m+1 | | 2(5m+1)=7m+1 | | 2x-3(5-3x)=7 | | 3y/10=54/5y | | 1/3(x-15)=x | | 16x+19=54(4+3x) | | 7x/16-4=x/4+2 | | 5x/12-3=x/4+1 | | 4n/3-5/11=73/33 | | 7/5c=7 |